Introduction
Obstructive sleep apnea (OSA) is a sleep disorder in which a person repeatedly stops breathing while sleeping. Low motor tone of the tongue and/or airway dilator muscles cause an obstruction of the upper airway while sleeping. Worldwide, the prevalence of OSA in men is estimated to be 3% to 7%, and in women it is estimated to be 2% to 5%. OSA is present in 41% of individuals with a BMI greater than 28, which is determined as a person’s weight in kilograms divided by the square of their height in meters. If a patient may not be aware of snoring or apneic episodes. Thus, Collateral sleep history and recognition of linked medical comorbid illnesses that may imply OSA as an underlying diagnosis are critical. OSA has a complicated etiology, involving a complex interplay of anatomic, neuromuscular, and genetic variables, as well as an underlying hereditary predisposition to the condition.

Snoring, male gender, middle age, women’s menopause, obesity, large neck circumference, nasal obstruction, enlarged tonsils, adenoids, macro-glossia, and low-laying soft palate are all risk factors. Increased snoring index prior to surgery is a strong predictor of operation failure. However, a high basal SpO2 level before surgery is a strong predictor of success. When the brain fails to communicate with the muscles that control breathing, central sleep apnea (CSA) occurs. In contrast to obstructive sleep apnea, which is a mechanical problem.

To diagnose OSA, various levels of nocturnal monitoring of respiratory, sleep, and cardiac parameters (Polysomnography) is used, with the goal of detecting obstructive events and changes in oxygen saturation. The aim of study is to detect the of...
importance anterolateral advancement pharyngoplasty in treating obstructive sleep apnea by increasing pharyngeal airspace and decreasing palatal and lateral pharyngeal wall collapse.

PATIENTS AND METHODS

It's an interventional prospective study. The research procedure was authorized by the research ethics committee of Al-Azhar University's faculty of medicine for girls and the hospital's ethics board, and the patients signed a written informed permission form. This research was carried out at otorhinolaryngology department of Al-Zahraa University hospital. The patients were operated upon between December 2017 and May 2019. This study involved 30 patients over the age of 18 complaining of obstructive sleep apnea. The patients were followed up for six months after operation. We asked for postoperative symptoms and satisfactions one month after operation. Polysomnography was done at kobry el koppa military hospital.

Inclusion criteria:

The following patients were included into the study: adults more than 18 years, BMI less than 30 kg*m², suitable for general anesthesia, have sleep study and diagnosed as OSA syndrome, Patients who are unable to use continuous positive airway pressure (CPAP) or who are non-compliant, with no previous history of sleep surgery.

Exclusion criteria:

Patients with the following criteria were excluded from the study; patients less than 18 years, BMI more than 30 kg*m², those who aren't candidates for general anesthesia, patients who have had previous palatal surgery, such as uvulopalatopharyngoplasty (UPPP), and severe craniofacial abnormalities.

The Stop Bang score and the Epworth score questionnaire were used to examine each patient based on their medical history, with special attention devoted to their sleep history. BMI, Neck circumference, and blood pressure are all part of a general systemic checkup. ENT evaluation, polysomnography, and lateral pharyngoplasty were performed.

Surgical procedure

A bilateral tonsillectomy preceded the lateral pharyngoplasty procedure if it hasn't been done previously. The palatoglossus and palatopharyngeus muscles are identified by removing the tonsillar fossa mucosa. Next, we remove a triangle of mucosa and muscle (palatoglossus) from the lateral oral free margin of the soft palate and anterior pillar using an upside-down ‘V-shape’ incision. Then, using both monopolar cautery and blunt dissection, elevate the cranial half of the palatopharyngeus muscle from the superior pharyngeal constrictor muscle (SPC).

After that, we used three to four interrupted 3-0 monofilament absorbable, vertical mattress sutures to suture the palatopharyngeus flap to the anterior pillar (the portion that was detached from the SPC), taking generous bites with each stitch. The sutures were then tied just tightly enough to oppose the edges.

Statistical analysis

The data were analysed using the social package for statistical science (SPSS) version 17. Categorical variables are presented as relative frequency (n.) and percentages, while quantitative data is presented as arithmetic mean and standard deviation (SD)The statistical difference between two points in time was investigated using the paired (t) test. To interpret the results, a P value of less than 0.05 was used as the margin of significance.

RESULTS

Table (1) shows that the studied patients were 18 males (60%) and 12 females (40%) with mean age of (45.10 ± 9.06).

Table (2) There was statistically significant decrease of sleeping index postoperatively compared to preoperatively (37.53 ± 2.64 vs51.27 ± 5.71)(p< 0.001). The percentage of reduction of SI was (26.27±6.37) There was statistically significant decrease of apnea hypopnea index (AHI) postoperatively compared topreoperatively (21.33 ± 8.07 vs 27.77 ± 9.55) (p< 0.001). The percentage of reduction of AHI was (24.21±8.01). There was statistically significant decrease of Epworth sleepiness scale (ESS) postoperatively compared topreoperatively (0.83 ± 0.7 vs 2.40 ± 0.72) (p < 0.001). The percentage of reduction of ESS was (68.89±25.04). There was statistically significant increase of base line Spo2 postoperatively compared topreoperatively (94.40 ± 2.42 vs 84.97 ± 3.21) (p < 0.001). The percentage of increase of Spo2 was (9.43 ± 2.79)

Table (3) demonstrated that the postoperative pain collected from patient on7th day by visual analogue scale (VAS) it was mild in 12 patient (40%) patient and it was moderate in 10 patient (33.3%), and severe in 8 patient (26.7%). As regard to intraoperative bleeding according to aspirated blood intraoperatively in suction containers there was no bleeding in 2 patient (6.7%) and small amount 15 patient (50%), moderate amount in 5 patient (16.7%), and large amount in 8 patient (26.7%). As regard to postoperative dysphagia (two weeks postoperative) it was mild 15 patient (50%) and moderate 10 patient (33.3%), and severe 5 patient (16.7%)

Table (4) revealed that as regard to satisfaction of patients after operation the patients who was completely satisfied was 10 patient (33.3%), very satisfied was 10 patient (33.3%), somewhat satisfied 5 patient(16.7%), and not at all 5 patient (13.3%).
Table (1): Distribution of the studied case according to demographic data

<table>
<thead>
<tr>
<th>Studied group</th>
<th>Patients with OSA (n = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td></td>
</tr>
<tr>
<td>Age \ years</td>
<td>28– 61 \ 45.10 ± 9.06</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>Age groups \ years</td>
<td>n (%)</td>
</tr>
<tr>
<td><50</td>
<td>20 (66.7)</td>
</tr>
<tr>
<td>≥50</td>
<td>10 (33.3)</td>
</tr>
<tr>
<td>Sex</td>
<td>n (%)</td>
</tr>
<tr>
<td>Male</td>
<td>20 (66.7)</td>
</tr>
<tr>
<td>Female</td>
<td>12 (40.0)</td>
</tr>
</tbody>
</table>

Table (2): Comparison between pre and post according to Apnea-hypopnea index - sleeping index Epworth sleeping scale

<table>
<thead>
<tr>
<th>Item</th>
<th>Preoperative (n=30)</th>
<th>Postoperative (n=30)</th>
<th>Decrease</th>
<th>% decrease</th>
<th>t</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHI</td>
<td>Min. – Max. Mean ± SD</td>
<td>6.0 – 40.0 \ 27.77 ± 9.55</td>
<td>5.0 – 30.0 \ 21.33 ± 8.07</td>
<td>6.43 ± 2.22</td>
<td>24.21 ± 8.01</td>
<td>1.99</td>
</tr>
<tr>
<td>ESS</td>
<td>Min. – Max. Mean ± SD</td>
<td>1.0 – 3.0 \ 2.40 ± 0.72</td>
<td>0.0 – 2.0 \ 0.83 ± 0.70</td>
<td>1.57 ± 0.63</td>
<td>68.89 ± 25.04</td>
<td>6.05</td>
</tr>
<tr>
<td>SI</td>
<td>Min. – Max. Mean ± SD</td>
<td>40.0 – 65.0 \ 51.27 ± 5.71</td>
<td>33.0 – 42.0 \ 37.53 ± 2.64</td>
<td>13.73 ± 4.52</td>
<td>26.27 ± 6.37</td>
<td>8.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Preoperative (n=30)</th>
<th>Postoperative (n=30)</th>
<th>Increase</th>
<th>% Increase</th>
<th>t</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2</td>
<td>Min. – Max. Mean ± SD</td>
<td>80.0 – 94.0 \ 84.97 ± 3.21</td>
<td>91.0 – 98.0 \ 94.40 ± 2.42</td>
<td>9.43 ± 2.79</td>
<td>11.20 ± 3.56</td>
<td>18.53</td>
</tr>
</tbody>
</table>

Apnea-hypopnea index (AHI), Sleeping index (SI), Epworth sleeping scale (ESS), SpO2: oxygen saturation, paired t-test (t)

Table (3): Distribution of the studied cases according to postoperative symptoms

<table>
<thead>
<tr>
<th>Postoperative symptoms</th>
<th>Studied group</th>
<th>Patients with OSA (n = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td></td>
<td>no. (%)</td>
</tr>
<tr>
<td>Mild</td>
<td>12 (40.0)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>10 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>8 (26.7)</td>
<td></td>
</tr>
</tbody>
</table>

Bleeding		no. (%)
No	2 (6.7)	
Small amount	15 (50.0)	
Moderate amount	5 (16.7)	
Large amount	8 (26.7)	

Dysphagia		no. (%)
Mild	15 (50.0)	
Moderate	10 (33.3)	
Severe	5 (16.7)	

Table (4): Distribution of the studied cases according to satisfaction

<table>
<thead>
<tr>
<th>Satisfaction</th>
<th>Studied group</th>
<th>Patients with OSA (n = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
<td>5 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Somewhat satisfied</td>
<td>5 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Very satisfied</td>
<td>10 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Completely satisfied</td>
<td>10 (33.3)</td>
<td></td>
</tr>
</tbody>
</table>
Figure (1) : Steps of lateral pharyngoplasty

(A) Beginning of the division of the palatopharyngeus from the superior pharyngeal constrictor muscle (SPC), (B) Cut off the right superior pharyngeal constrictor muscle releasing the arch of the palatopharyngeus flap and exposing the buccopharyngeal fascia. (C) Vertical mattress sutures of the palatopharyngeus flap to the lateral pharyngeal wall and anterior pillar.
Figure (2a): PSG of patient with OSA before LPP shows the respiratory analysis and related position changes during sleep cycle.

Figure (2b): PSG of the same patient 6 month after LPP shows the marked improvement of respiratory events and related position changes during sleep cycle.
DISCUSSION
Obstructive sleep apnea is a serious medical condition that affects up to 4% of adults in their forties. The most common complaints include loud snoring, sleep disruption, and excessive daytime tiredness. Patients with apnea have fragmented sleep and may develop cardiovascular problems as a result of the repeated cycles of snoring, airway collapse, and arousal. The majority of individuals are obese and have a short, thick neck[1][16]. Obstructive sleep apnea Its classified into 3 degrees according to the apnea -hypopnea index (AHI) which is the number of apnea and hypopneas per hour of sleep [5].

The current study revealed that there was male predominance (60%). Our result agreed with Khan et al [10] where men made up 81% of the population with OSA. This suggests that OSA is more common in men.

In present study there was significant reduction of AHI postoperatively (21.33 ± 8.07) compared to preoperative value (27.77 ± 9.55). Our result agrees with Cahali [11] who found that the median AHI decreased from 41.2 (34.0) to 9.5 (17.7). Sixty percent of patients had a postoperative AHI of less than 20. Also our results agree with Dizdar et al.[12] The mean AHI of lateral pharyngoplasty patients before surgery was 23.4, and the mean AHI after surgery was 11.3 (P < 0.05).

In the present study there was statistically significant decrease of sleeping index postoperatively compared to preoperatively (37.53±2.64 vs. 51.27±5.71) (p< 0.001). Our result agreed with Cahali [11] who discovered that ten persons with OSAHS who were first selected for treatment with the Lateral pharyngoplasty operation had a statistically significant difference (p=0.005) in their snoring index from 10 IQR preoperatively to 3.5 IQR postoperatively.

In present there was statistically significant decrease of Epworth sleepiness scale postoperatively compared to preoperatively (0.83 ± 0.7 vs 2.40 ± 0.72)(p< 0.001). Our result agree with O'Bryan [13] who found that the median ESS in the Lateral pharyngoplasty group improved from 11 IQR to 7 IQR with a statistically significant difference (P<0.01). Also, our result agrees with Cahali [11] where the median ESS improved from 13 quartile range to 5 quartile range with statistically high significance difference in the group of 10 patients who underwent Lateral pharyngoplasty.

As regard to postoperative dysphagia (after two weeks postoperative) it was mild (50%) and moderate (33.3%), and severe (16.7%) Our result agrees with Junior and Cahali [14], who conducted a prospective study on 20 patients with obstructive sleep apnea (OSA) between March 2008 and August 2009, discovered that patients who had a lateral pharyngoplasty completely returned to normal swallowing after 33 days, with a return to normal diet after 10.9 days, with a range of 5 to 17 days.

As regard to postoperative bleeding there was no bleeding in (6.7%) and small amount (50%), moderate amount in (16.7%), and large amount in (26.7%). Our result agrees with Park et al [15] Postoperative bleeding was noted in four patients (9.8%), and it stopped spontaneously in all four cases without the need for emergency surgery, with just one incidence of VPI (2.4%).

As regard to postoperative pain collected from patient on 7th day by VAS, it was mild in (40%) patient and it was moderate in (33.3%), and severe in (26.7%). Our result agrees with Cahali [11] who conducted a study on 10 patients whom Lateral pharyngoplasty giving a median value of 4.5 (4.0). After 10 days of the procedure, analgesics were usually no longer required. The median time it took for patients to return to normal nourishing was 14.5 (10) days.

CONCLUSION
In selected patients, splinting the lateral pharyngeal wall (by extended lateral pharyngoplasty) obtains significant improvement in subjective snoring and daytime sleepiness, as well as objective adverse sleep respiratory events and sleep architecture, while retaining normal pharyngeal function. There is great improvement in snoring index and baseline SpO2 level postoperative so it ensure the success of operation. As a stand-alone treatment, Cahali VI lateral pharyngoplasty can help all OSA patients.

Conflict of interest: there is no conflict of interest.

Financial support: There is no financial support.

REFERENCE
الملخص العربي

الجراحة الوظيفية لتوسيع البلعوم لعلاج الشخير وانقطاع النفس الإسمنادي أثناء النوم
علياء حمدي دوابة1، سيد محمود مخيمير2، توفيق عبد العاطي الخولي3، محمد فتحي زيدان2
1قسم الأنف والأذن والحنجرة، مستشفى الرحمانية المركزي، البحيرة، جمهورية مصر العربية.
2قسم الأنف والأذن والحنجرة، كلية طب البنات، القاهرة، جامعة الأزهر، جمهورية مصر العربية.

ملخص البحث

الفحصي: يُعرَف انقطاع النفس الإسمنادي النومي بأنه "خمسة أحداث تنفسية أو أكثر انقطاع النفس، وقلة التنفس بالاقتران مع النعاس المفرط أثناء النهار، أو الاستيقاظ مع اللثة، أو الاختناق، أو حبس النفس.

الهدف: تهدف الدراسة إلى التحقق من فاعلية عملية تجميل البلعوم التكميلي الأمامي لتوسيع المجال البلعومي وتقليل انهيار جدار الحلق والبلعوم اللاحق في علاج انقطاع النفس الإسمنادي النومي.

الطريق: تضمنت الدراسة المستقبليه 30 مرضا تزيد أعمارهم عن 18 عامًا الذين يشكون من انقطاع النفس الإسمنادي النومي، وقد تم تقييم كل مريض من خلال التاريخ، وتقييم النوم، وتقديم إجراء عملية رأب البلعوم الجانب (كاهالي السادس)، وتم متابعة المرضى لمدة ست أشهر بعد العملية.

النتائج: فيما يتعلق بمؤشر النوم كان متوسط قبل الجراحة (51.27 ± 5.71) وكان متوسط بعد الجراحة (37.53 ± 2.64) كانت ذات دالة إحصائية عالية.

فيما يتعلق بمؤشر توقّف التنفس أثناء التنفس كان متوسط قبل الجراحة (27.77 ± 9.55) ومتوسط بعد الجراحة (21.33 ± 8.07) وكان ذو دالة إحصائية عالية. فيما يتعلق بمقياس ابوروت للنوم، كان متوسط قبل الجراحة (0.72 ± 2.40) ومتوسط بعد الجراحة (0.83 ± 0.70) وكان ذو دالة إحصائية عالية.

الاستنتاجات: تم إثبات أهمية هامة قابلية انهيار الجدار البلعومي الجانباني في التسبب في متلازمة توقف التنفس أثناء النوم.
يمكن استخدام عملية رأب البلعوم الجانب (كاهالي السادس) كإجراء مستقل في جميع المرضى. دراسة النوم كأداة تشخيصية أساسية لتشخيص التحقق قبل الجراحة لحدود متلازمة توقف التنفس أثناء النوم.

الكلمات المفتاحية: انقطاع النفس الإسمنادي النومي، تخطيط النوم، رأب البلعوم الجانب.

الباحث الرئيسي

الاسم: علياء حمدي دوابة، قسم الأنف والأذن والحنجرة، مستشفى الرحمانية المركزي، البحيرة، جمهورية مصر العربية.
الهاتف: +201096344257
البريد الإلكتروني: Alyaahamdy5@gmail.com